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equipment, and to Dr. G. E. R. Deacon and the
captain and officers of R.R.S. Discovery II for their
part in making the observations.

‘Ym(mg, F)‘ B., Gerrard, H., and Jevons, W., Phil, Mag., 40, 149

* Longuet-Higging, M. S., Mon. Not. Roy. Astro. Soc., Geophys. Sup;
5, 285 (1949). e S

2y ox(x‘;;.r(x,ggh) 8., Woods Hole Papers in Phys. Qcearog. Meteor., 11

‘Ekman, V. W., Arkiv. Mat. Astron. Fysik. (Stockholm), 2 (11) (1905).

MOLECULAR STRUCTURE OF
NUCLEIC ACIDS

A Structure for Deoxyribose Nucleic Acid

E wish to suggest a structure for the salt

of deoxyribose nucleic acid (D.N.A.). This
structure has novel features which are of considerable
biological interest.

A structure for nucleic acid has already been
proposed by Pauling and Corey!. They kindly made
their manuscript available to us in advance of
publication. Their model consists of three inter-
twined chains, with the phosphates near the fibre
axis, and the bases on the outside. In our opinion,
this structure is unsatisfactory for two reasons :
(1) We believe that the material which gives the
X-ray diagrams is the salt, not the free acid. Without
the acidic hydrogen atoms it is not clear what forces
would hold the structure together, especially as the
negatively charged phosphates near the axis will
repel each other. (2) Some of the van der Waals
distances appear to be too small.

Another three-chain structure has also been sug-
gested by Fraser (in the press). In his model the
phosphates are on the outside and the bases on the
inside, linked together by hydrogen bonds. This
structure as described is rather ill-defined, and for

this reason we shall not comment

on it.

We wish to put forward a
radically different structure for
the salt of deoxyribose nucleic
acid. This structure has two
helical chains each coiled round
the same axis (see diagram). We
have made the usual chemical
assumptions, namely, that each
chain consists of phosphate di-
ester groups joining B-D-deoxy-
ribofuranose residues with 38’,5"
linkages. The two chains (but
not their bases) are related by a
dyad perpendicular to the fibre
axis. Both chains follow right-
handed helices, but owing to
the dyad the.sequences of the
atoms in the two chains run
in opposite directions. Each
chain loosely resembles Fur-
berg’s? model No. 1; that is,
the bases are on the inside of
the helix and the phosphates on
the outside. The configuration
of the sugar and the atoms

“mnear it is close to Furberg’s

‘standard configuration’, the

sugar being roughly perpendi-

cular to the attached base. There

This figure i3 purely
diagrammatic. The two
ribbons symbolize the
two phosphate—sugar
chains, and the hori-
zontal rods the pairs of
bases holding the chains
together. The vertical
line marks the fibre axis
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is & residue on each chain every 8-4 A. in the z-direc
tion. We have assumed an angle of 368° betwee
adjacent residues in the same chain, so that th
structure repeats after 10 residues on each chain, tha
is, after 34 A. The distance of a phosphorus aton
from the fibre axis is 10 A. As the phosphates are o
the outside, cations have easy access to them.

The structure is an open one, and its water conten
is rather high. At lower water contents we woul
expect the bases to tilt so that the structure coul
become more compact.

The novel feature of the structure is the manne
in which the two chains are held together by th
purine and pyrimidine bases. The planes of the base
are perpendicular to the fibre axis. They are joine
together in pairs, & single base from one chain bein
hydrogen-bonded to a singlo base from the othe
chain, so that the two lie side by side with identice
2-co-ordinates. One of the pair must be & purine an
the other a pyrimidine for bonding to occur. Th
hydrogen bonds are made as follows : purine positio:
1 to pyrimidine position 1; purine position 6 t
pyrimidine position 6.

If it is assumed that the bases only occur in th
structure in the most plausible tautomeric form
(that is, with the keto rather than the enol con
figurations) it is found that only specific pairs ¢
bages can bond together. These pairs are : adenin
(purine) with thymine (pyrimidine), and guanin
(purine) with cytosine (pyrimidine).

In other words, if an adenine forms one member ¢
& pair, on either chain, then on these assumption
the other member must be thymine; similarly fo
guanine and cytosine. The sequence of bases on
single chain does not appear to be restricted in an;
way. However, if only specific pairs of bases can b
formed, it follows that if the soquence of bases o
one chain is given, then the sequence on the othe
chain is automatically determined.

It has been found experimentally®* that the rati
of the amounts of adenine to thymine, and the rati
of guanine to cytosine, are always very close to unit;
for deoxyribose nucleic acid.

It is probably impossible to build this structur
with & ribose sugar in place of the deoxyribose, a
the extra oxygen atom would make too close a va:
der Waals contact.

The previously published X-ray data’® on deoxy
ribose nucleic acid are insufficient for a rigorous tes
of our structure. So far as we can tell, it is roughl
compatible with the experimental data, but it mus
be regarded as unproved until it has been checke
against more exact results. Some of these are give:
in the following communications. We were not awar
of the details of the results presented there when w
devised our structure, which rests mainly though no
entirely on published experimental data and sterec
chemical arguments.

It has not escaped our notice that the specifi
pairing we have postulated immediately suggests
possible copying mechanism for the genetic materia.

Full details of the structure, including the con
ditions assumed in building it, together with a se
of co-ordinates for the atoms, will be publishes
elsewhere.

We are much indebted to Dr. Jerry Donohue fo
constant advice and criticism, especially on inter
atomic distances. We have also been stimulated b;
a knowledge of the general nature of the unpublishe:
experimental results and ideas of Dr. M. H. F
Wilkins, Dr, R. E, Franklin and their co-workers a
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King’s College, London. One of us (J.D. W.) has been
aided by a fellowship from the National Foundation
for Infantile Paralysis.
J. D. WaTsonN
F. H. C. Cricx
Medical Research Council Unit for the
Study of the Molecular Structure of
Biological Systems,
Cavendish Laboratory, Cambridge.
April 2.

1 Pauling, L., and Corey, R. ]3 Aature 171, 346 (1953) ; Proc. U.S.

Nat." Acad. Sci., 39, 84 (1953).
2 Furberg. ., Acta Lhem Scand., 8, 634 (1952).
* Chargaff, E., for references see Zamenhof, S., Brawerman, G.. and

Chargaff, E., Biochim. et Biophys. Acta, 9, 402 (1952).

¢ Wyatt, G. R., J. Gen. Physiol., 88, 201 (1952).
*® Astbury, W. T., Symp. Soc. Exp. Biol. 1, Nucleic Acid, 66 (Camb.

Univ. Press, 1047).
¢ Wilking, M. H. F., and Randall, J. T., Biochim. et Biophys. Acta,

10, 192 (1953).

Molecular Structure of Deoxypentose
Nucleic Acids

WHILE the biological properties of deoxypentose
nucleic acid suggest a molecular structure con-
taining great complexity, X-ray diffraction studies
described here (cf. Astbury?) show the basic molecular
configuration has great simplicity. The purpose of
this communication is to describe, in a preliminary
way, some of the experimental evidence for the poly-
nucleotide chain configuration being helical, and
existing in this form when in the natural state. A
fuller account of the work will be published shortly.

The structure of deoxypentose nucleic acid is the
same in all species (although the nitrogen base ratios
alter considerably) in nucleoprotein, extracted or in
cells, and in purified nucleate. The same lincar group
of polynucleotide chains may pack together parallel
in different ways to give crystalline'-?, semi-crystalline
or paracrystalline material. In all cases the X-ray
diffraction photograph consists of two regions, one
determined largely by the regular spacing of nucleo-
tides along the chain, and the other by the longer
spacings of the chain configuration. The sequence of
different nitrogen bases along the chain is not made
visible.

Oriented paracrystalline deoxypentose nuecleic acid
(‘structure B’ in the following communication by
Franklin and Gosling) gives a fibre diagram as shown
in Fig. 1 (cf. ref. 4). Astbury suggested that the
strong 3-4-A. reflexion corresponded to the inter-
nucleotide repeat along the fibre axis. The ~ 34 A.
layer lines, however, are not due to a repeat of a
polynucleotide composition, but to the chain con-
figuration repeat, which causes strong diffraction as
the nucleotide chains have higher density than the
interstitial water., The absence of reflexions on or
near the meridian immediately suggests a helical
structure with axis parallel to fibre length.

Diffraction by Helices

It may be shown® (also Stokes, unpublished) that
the intensity distribution in the diffraction pattern
of a series of points equally spaced along a helix is
given by the squares of Bessel functions. A uniform
continuous helix gives a series of layer lines of spacing
corresponding to the helix pitch, the intensity dis-
tribution along the nth layer line being proportional
to the square of J,, the nth order Bessel function.
A straight line may be drawn approximately through

1953 VvoL. 171
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Tig. 1. Fibre diagram of deoxypentow nucleic acid fromr B. coli.

Fibre axis vertical

the innermost maxima of each Bessel function and
the origin. The angle this line makes with the equator
is roughly equal to the angle between an element of
the helix and the helix axis. If a unit repeats n times
along the helix there will be a meridional reflexion
(Jo2%) on the nth layer line. The helical configuration
produces side-bands on this fundamental frequency,
the effect® being to reproduce the intensity distribution
about the origin around the new origin, on the nth
layer line, corresponding to C in Fig. 2.

‘We will now briefly analyse in physical terms some
of the effects of the shape and size of the repeat unit
or nucleotide on the diffraction pattern. First, if the
nucleotide consists of a unit having circular symmetry
about an axis parallel to the helix axis, the whole
diffraction pattern is modified by the form factor of
the nucleotide. Second, if the nucleotide consists of
a series of points on a radius at right-angles to the
helix axis, the phases of radiation scattered by the
helices of different diameter passing through each
point are the same. Summation of the corresponding
Bessel functions gives reinforcement for the inner-

|
C\
< . & P
% Al A i
< ~ Ala
— Ala - B i
— S , B B
7 PR 8 o
)

Tig. 2. Diffraction pattern of system of helices corresponding to
structure of deoxypentose nucleic acid. The squares of Bessel
functions are plotted about 0 on the equator and on the first,
second, third and fifth layer lines for half of the nucleotide mass
at 20 A. diameter and remainder distributed along a radius, the
masy at a given radius being proportional to the radins. About
C on the tenth layer line similar functions are plotted for an outer
diameter of 12 A.
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Direct and indirect actions of ionizing radiation

Direct Action

In direct effects in X-rays: 70%
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DNA damage and repair
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Kenneth H Kraemer, MDBasic Research Laboratory
Center for Cancer Research, National Cancer Institute
Bethesdakraemerk@nih.gov

Initial Posting: June 20, 2003; Last Update: April 22, 2008.
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DNA-PKcs (pT2609)

'

Asaithmby and Chen DJ, Mechanism of cluster DNA damage repair in response to high—atomic
number and energy particles radiation. Mutation Res 2010
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y-H2AX foci formation in ONS76 after
2 Gy of proton irradiation
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DNA damage response signal-transduction network
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Loss of clonogenicity after irradiation
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Serial Changes of the DNA histogram after irradiation with 10 Gy of 80

keV/mm carbon beam. (Zsuboi K: JRR 2007)

NB1RGB
Normal

Skin fibroblast

US7MG: P53 +
glioblastoma cell line

TK1: P53 -
glioblastoma cell line

Control

S e

Channels

ccccccccc

1ERE L



B8 54 M Signal Transduction

Sensor ?

'

(+P)

i [

/

<Y p53 (+P) l(+P)
(translation)l 0[50 — | Cdc25A — 5 fif
p21 o[58 — | Cdc25C 1133 | T FEE

l(—P)

Gl—S — G2 — M

|
Cdk2/Cyclin E




MRRFEE LV DIRR



lonizing Radiation

v

10-18

10-12
10®

1

103 17 min

106 12 days

10° 30 years
Life span ——

1012
(Sec) Y




HIR DR REBDEL
7 iRb—< X (apoptosis)
40— X (necrosis)
T DD FESE

R DEEFERED E 1L
Cell cycle DIE1E
M BA%E (interphase death)
YERESE (reproductive death)

IESERED JH 5k -
5B FE (Loss of clonogenity)






Detection of apoptotic cells by staining with Hoechst 33342 in US7MG cells before and
after irradiation with 10 Gy of 80 keV/um carbon beam. (x100)

before Day 1

Day 7

(Tsuboi K: JRR 2007)
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Apoptosis: 7RI SLESNT=-HMROBERER. EBNERE
Chromatin condensation
Nuclear fragmentation
Mediated by Caspases
Extrinsic pathway: FAS,FASL
Intrinsic pathway: mitochondria

Necrosis: ZEHHTEL (messy, dirty). HIlAD BIERZR
Cell swelling
Rupture
Release of intracellular content
Inflammation
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Dose-response curve
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BED: £ ¥ FRHIEMREE

BED = nd(1+d/0/B) Gy

where “n” is the fractionation number, “d” is the daily dose,
and o/ is assumed to be 10 for tumors and 3 for normal lung
tissue
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