PMEPA1/TMEPAI isoforms function via its PY and Smad-interaction motifs for tumorigenic activities of breast cancer cells.
Puteri MU, Watanabe Y, Wardhani BWK, Amalia R, Abdelaziz M, Kato M.
Genes Cells, 2020 Jun;25(6):375-390. doi: 10.1111/gtc.12766. Epub 2020 Apr 29.

TGF-β-Induced TMEPAI Attenuates the Response of Triple-Negative Breast Cancer Cells to Doxorubicin and Paclitaxel.
Wardhani BWK, Puteri MU, Watanabe Y, Louisa M, Setiabudy R, Kato M.
J Exp Pharmacol. 2020 Jan 23;12:17-26. doi: 10.2147/JEP.S235233. eCollection 2020.


THG-1 suppresses SALL4 degradation to induce stemness genes and tumorsphere formation through antagonizing NRBP1 in squamous cell carcinoma cells.
Hwang J, Haque MA, Suzuki H, Dijke PT, Kato M.
Biochem Biophys Res Commun. 2020 Mar 5; 523(2):307-314. doi: 10.1016/j.bbrc.2019.11.149. Epub 2019 Dec 19.

Promotion of cellular senescence by THG-1/TSC22D4 knockout through activation of JUNB.
Zhang X, Koga N, Suzuki H, Kato M.
Biochem Biophys Res Commun. 2020 Feb 19; 522(4):897-902. doi: 10.1016/j.bbrc.2019.11.145. Epub 2019 Dec 3.

A Perspective on the Development of TGF-β Inhibitors for Cancer Treatment.
Huynh LK, Hipolito CJ, Ten Dijke P.
Biomolecules. 2019; 9(11):743; doi: org/10.3390/biom9110743. PMID: 31744193

Generation of non-standard macrocyclic peptides specifically binding TSC-22 homologous gene-1.
Tran STP, Hipolito CJ, Suzuki H, Xie R, Kim Tuyen HD, Dijke PT, Terasaka N, Goto Y, Suga H, Kato M.
Biochem Biophys Res Commun. 2019 Aug 20;516(2):445-450. doi: 10.1016/j.bbrc.2019.06.035. Epub 2019 Jun 18.

Role of the kringle-like domain in glycoprotein NMB for its tumorigenic potential.
Xie R, Okita Y, Ichikawa Y, Muhammad FA, Huynh Dam KT, Tran SPT, Kato M.
Cancer Sci. 2019 Jul;110(7):2237-2246. doi: 10.1111/cas.14076. Epub 2019 Jun 26.

TMEPAI/PMEPA1 inhibits Wnt signaling by regulating β-catenin stability and nuclear accumulation in triple negative breast cancer cells.
Amalia R, Abdelaziz M, Puteri MU, Hwang J, Anwar F, Watanabe Y and Kato M.
Cell Signal. 2019 Jul;59:24-33. doi: 10.1016/j.cellsig.2019.03.016. Epub 2019 Mar 16.

Decreased sensitivity of several anticancer drugs in TMEPAI knockout triple-negative breast cancer cells.
Wardhani BWK, Puteri MU, Watanabe Y, Louisa M, Setiabudy R, Kato M.
Medical J. Indonesia. 28: 110-115, 2019. May16; 2019. doi: 10.13181/mji.v28i2.2687

PMEPA1/TMEPAI knockout impairs tumor growth and lung metastasis in MDA-MB-231 cells without changing monolayer culture cell growth.
Abdelaziz M, Watanabe Y, Kato M.
J Biochem. 2019 May 1;165(5):411-414. doi: 10.1093/jb/mvz022.

Stereodivergent Synthesis of Bispyrrolidinoindoline Alkaloidal Scaffolds and Generation of a Lead Candidate with Stereospecific Antiproliferative Activity.
Wada M, Suzuki H, Kato M, Oikawa H, Tsubouchi A and Oguri H
Chembiochem. 2019 May 15;20(10):1273-1281. doi: 10.1002/cbic.201800815. Epub 2019 Mar 28.


Cell-surface GPNMB and induction of stemness.
Okita Y, Chen C, Kato M.
Oncotarget. 2018 Dec 18;9(99):37289-37290. doi: 10.18632/oncotarget.26472. eCollection 2018 Dec 18. (Editorial)

Glycoprotein nmb is exposed on the surface of dormant breast cancer cells and induces stem cell-like properties.
Chen C, Okita Y, Watanabe Y, Abe F, Fikry MA, Ichikawa Y, Suzuki H, Shibuya A and Kato M.
Cancer Res. 2018; 78(22): 6424-6435. doi: 10.1158/0008-5472.CAN-18-0599. Epub 2018 Sep 17.

The possible repositioning of an oral anti-arthritic drug, auranofin, for Nrf2-activating therapy: The demonstration of Nrf2-dependent anti-oxidative action using a zebrafish model.
Fuse Y, Endo Y, Araoi S, Daitoku H, Suzuki H, Kato M and Kobayashi M.
Free Radic. Biol Med. 2018; 115: 405-411.

Roles of Glycoprotein nmb in breast cancer formation and malignant progression.
Okita Y, Chen C, Suzuki H and Kato M.
Cancer Sci. 2018; 109(1): 1041-1041.

Cell surface expression of GPNMB on dormant breast cancer stem cells.
Chen C, Okita Y and Kato M.
Cancer Sci. 2018; 109(1): 630-630.


Regulation of c-MYC transcriptional activity by transforming growth factor-beta 1-stimulated clone 22.
Zheng L, Suzuki H, Nakajo Y, Nakano A, and Kato M.
Cancer Sci. 2017; 109(2): 395-402.

Knock-out transmembrane prostate androgen-induced protein gene suppressed triple-negative breast cancer cell proliferation.
Wardhani BWK, Puteri MU, Watanabe Y, Louisa M, Setiabudy R and Kato M.
Med J Indonesia. 2017; 26(3): 178-182.

TMEPAI genome editing in triple negative breast cancer cells.
Wardhani BWK, Puteri MU, Watanabe Y, Louisa M, Setiabudy R and Kato M.
Med J Indonesia. 2017; 26(1): 14-18.

TIF1β is phosphorylated at serine 473 in colorectal tumor cells through p38 mitogen-activated protein kinase as an oxidative defense mechanism.
Shen LT, Chou HE. and Kato M.
Biochem Biophys Res Commun.2017 Oct 21;492(3):310-315. doi: 10.1016/j.bbrc.2017.08.117. Epub 2017 Aug 31.

The transcription factor MAFK induces EMT and malignant progression of triple-negative breast cancer cells through its target GPNMB.
Okita Y, Kimura M, Rudy X, Chen C, Shen LTW, Kojima Y, Suzuki H, Muratani M, Saitoh M, Semba K, Heldin CH and Kato M.
Sci Signal. 2017 Apr 11; 10(474). doi: 10.1126/scisignal.aak9397.

Targeting TGF-β Signaling in Cancer.
Colak S, Ten Dijke P.
Trends in cancer. 2017 Jan; 3(1): 56-71. doi: 10.1016/j.trecan.2016.11.008.

Repression of Smad3 by Stat3 and c-Ski/SnoN induces gefitinib resistance in lung adenocarcinoma.
Makino Y, Yoon JH, Bae E, Kato M, Miyazawa K, Ohira T, Ikeda N, Kuroda M and Mamura M.
Biochem Biophys Res Commun. 2017 Mar 4; 484(2): 269-277. doi: 10.1016/j.bbrc.2017.01.093.


A current perspective on applications of macrocyclic-peptide-based high-affinity ligands.
Leenheer D, Ten Dijke P and Hipolito CJ.
Biopolymers. 2016 Nov; 106(6): 889-900. doi: 10.1002/bip.22900.

In Vitro Selected Macrocyclic Peptides: Tools for Regulating the Conformational Freedom of Transmembrane Proteins.
Hipolito CJ, Nishio K and Suga H.
Yakugaku Zasshi. 2016; 136(2): 191-6. doi: 10.1248/yakushi.15-00229-4.

Efficient DNA binding of NF-κB requires the chaperone-like function of NPM1.
Lin J, Kato M, Nagata K and Okuwaki M.
Nucleic Acids Res. 2016 Dec 20. doi: 10.1093/nar/gkw1285. [Epub ahead of print] PMID: 28003476.

Regulation of bone morphogenetic protein signaling by ADP-ribosylation.
Watanabe Y, Papoutsoglou P, Maturi V, Tsubakihara Y, Hottiger MO, Heldin CH and Moustakas A.
J Biol Chem. 2016 Apr 21. pii: jbc.M116.729699. [Epub ahead of print] PMID: 27129221.

The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling.
Raja E, Tzavlaki K, Vuilleumier R, Edlund K, Kahata K, Zieba A, Morén A, Watanabe Y, Voytyuk I, Botling J, Söderberg O, Micke P, Pyrowolakis G, Heldin CH and Moustakas A.
Oncotarget. 7(2): 1120-1143, 2016. doi: 10.18632/oncotarget.6683. PMID: 26701726.

Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β.
Valcourt U, Carthy J, Okita Y, Alcaraz L, Kato M, Thuault S, Bartholin L and Moustakas A.
Methods Mol Biol. 1344: 147-181, 2016. doi: 10.1007/978-1-4939-2966-5_9. PMID: 26520123. (IF: 1.29)

β-Cell-Specific Mafk Overexpression Impairs Pancreatic Endocrine Cell Development.
Abdellatif AM, Oishi H, Itagaki T, Jung Y, Shawki HH, Okita Y, Hasegawa Y, Suzuki H, El-Morsy SE, El-Sayed MA, Shoaib MB, Sugiyama F and Takahashi S.
PLoS One.11(2): e0150010, 2016. doi: 10.1371/journal.pone.0150010. eCollection 2016. 2016 Feb 22, PMID: 26901059.

Regulation of the TMEPAI Promoter by TCF7L2: the C-terminal Tail of TCF7L2 is Essential to Activate the TMEPAI Gene.
Nakano N, Kato M andItoh S.
J Biochem. 159: 27-30, 2016. doi:10.1093/jb/mvv117. Epub 2015 Nov 20. PMID: 26590303. (3.073)


Arf6 regulates tumour angiogenesis and growth through HGF-induced endothelial β1 integrin recycling.
Hongu T, Funakoshi Y, Fukuhara S, Suzuki T, Sakimoto S, Takakura N, Ema M, Takahashi S, Itoh S, Kato M, Hasegawa H, Mochizuki N and Kanaho Y.
Nat Commun. 2015; 6: 7925. doi: 10.1038/ncomms8925.

Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation.
Yoon JH, Sudo K, Kuroda M, Kato M, Lee IK, Han JS, Nakae S, Imamura T, Kim J, Ju JH, Kim DK, Matsuzaki K, Weinstein M, Matsumoto I, Sumida T and Mamura M.
Nat Commun. 62015 Jul21;6: 7600. doi: 10.1038/ncomms8600.

Cooperative induction of transmembrane prostate androgen induced protein TMEPAI/PMEPA1 by transforming growth factor-β and epidermal growth factor signaling.
Azami S, Vo Nguyen TT, Watanabe Y and Kato M.
Biochem Biophys Res Commun. 2015; 456(2): 580-585.


日本機械学会2014年度年次大会講演論文集. 2014.

Fine-Tuning of Smad Protein Function by Poly(ADP-Ribose) Polymerases and Poly(ADP-Ribose) Glycohydrolase during Transforming Growth Factor β Signaling.
Dahl M, Maturi V, Lonn P, Papoutsoglou P, Zieba A, Vanlandewijck M, van der Heide LP, Watanabe Y, Soderberg O, Hottiger MO, Heldin CH and Moustakas A.
PLoS One. 2014; 9(8): e103651. doi: 10.1371/journal.pone.0103651. eCollection 2014.

C18ORF1: A Novel Negative Re,ulator of TGF-β Signaling.
Nakano N, Maeyama K, Sakata N, Itoh F, Akatsu R, Nakata M, Katsu Y, Ikeno S, Togawa Y, Vo Nguyen TT, Watanabe Y, Kato M and Itoh S.
J Biol Chem. 2014; 289(18): 12680-12692.

TMEPAI/PMEPA1 enhances Tumorigenic Activities in Lung Cancer Cells.
Vo Nguyen TT, Watanabe Y, Shiba A, Noguchi M, Itoh S and Kato M.
Cancer Sci. 2014; 105(3): 334-341.

病理と臨床. 2014; 32(10): 1163-1167.

医学のあゆみ. 2014; 250(6, 7): 511-515.


Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing Eomesodermin in cytotoxic T lymphocytes.
Yoon JH, Jung SM, Park SH, Kato M, Yamashita T, Lee IK, Sudo K, Nakae S, Han JS, Kim OH, Oh BC, Sumida T, Kuroda M, Ju JH, Jung KC, Park SH, Kim DK and Mamura M.
EMBO Mol Med. 2013; 5: 1720-1739.

みずほ情報総研技報. 2013; 5(1): 1-6.

Transforming Growth Factor-β Induces transcription factors MafK and Bach1 to Suppress Expression of the Heme Oxygenase-1 Gene.
Okita Y, Kamoshida A, Suzuki H, Itoh K, Motohashi H, Igarashi K, Yamamoto M, Ogami T, Koinuma D and Kato M.
J Biol Chem. 2013; 288(28): 20658-20667.

Screening quality for Ca2+-activated potassium channel in IonWorks Quattro is greatly improved by using BAPTA-AM and ionomycin.
Ido K, Ohwada T, Yasutomi E, Yoshinaga T, Arai T, Kato M and Sawada K.
J Pharmacol Toxicol Methods. 2013; 67(1): 16-24.


Delayed cutaneous wound healing in Fam129b/Minerva-deficient mice.
Oishi H, Itoh S, Matsumoto K, Ishitobi H, Suzuki R, Ema M, Kojima T, Uchida K, Kato M, Miyata T and Takahashi S.
J Biochem. 2012; 152(6): 549-555.

Smad2/Smad3 in endothelium is indispensable for vascular stability via S1PR1 and N-cadherin expressions.
Itoh F, Itoh S, Adachi T, Ichikawa K, Matsumura Y, Takagi T, Festing M, Watanabe T, Weinstein M, Karlsson S and Kato M.
Blood. 2012; 119(22): 5320-5328.


Interference of E2-2-mediated effect in endothelial cells by FAM96B through its limited expression of E2-2.
Yang W, Itoh F, Ohya H, Kishimoto F, Tanaka A, Nakano N, Itoh S and Kato M.
Cancer Sci.2011; 102(10): 1808-1814.

Establishment of a novel monoclonal antibody SMab-1 specific for IDHI-R132S mutation.
Kaneko MK, Tian W, Takano S, Suzuki H, Sawa Y, Hozumi Y, Goto K, Yamazaki K, Kitanaka C and Kato Y.
Biochem Biophys Res Commun. 2011; 406(4): 608-613.

Overexpression of the Transcription Factor Yin-Yang-1 Suppresses Differentiation of HaCaT Cells in Three-Dimensional Cell Culture.
Taguchi S, Kawachi Y, Ishitsuka Y, Fujisawa Y, Furuta J, Nakamura Y, Xu X, Ikebe D, Kato M and Otsuka F.
J Invest Dermatol. 2011; 131(1): 37-45.

病理診断に役立つ分子生物学 TGF-β 解説編, TGF-β 診断編
渡邊幸秀, 加藤光保
病理と臨床 臨時増刊号 2011; 29: 432-439.


Tissue- and Development-Dependent Expression of the Small GTPase Arf6 in Mice.
Akiyama M, Zhou M, Sugimoto R, Hongu T, Furuya M, Funakoshi Y, Kato M, Hasegawa H and Kanaho Y.
Dev Dynam. 2010; 239(12): 3416-3435.

Requirement of TCF7L2 for TGF-β-dependent transcriptional activation of the TMEPAI gene.
Nakano N, Itoh S, Watanabe Y, Maeyama K, Itoh F and Kato M.
J Biol chem. 2010; 285(49): 38023-38033.

TGF-β Signaling in Gingival Fibroblast-Epithelial Interaction.
Ohshima M, Yamaguchi Y, Matsumoto N, Micke P, Takenouchi Y, Nishida T, Kato M, Komiyama K, Abiko Y, Ito K, Otsuka K and Kappert K.
J Dent Res. 2010; 89(11): 1315-1321.

Inhibition of endothelial cell activation by bHLH protein E2-2 and its impairment of angiogenesis.
Tanaka A, Itoh F, Nishiyama K, Takezawa T, Kurihara H, Itoh S and Kato M.
Blood. 2010; 115(20): 4138-4147.

Trichostatin A-Induced TGF-β Type II Recepter Expression in Retinoblastoma Cell Lines.
Kashiwagi Y, Horie K, Kanno C, Inomata M, Imamura T, Kato M, Yamamoto T and Yamashita H.
IOVS. 2010; 51(2); 679-685.

Protein kinase C-dependent upregulation of miR-203 induces the differentiation of human keratinocytes.
Sonkoly E, Wei T, Pavez L, Suzuki H, Kato M, Torma H, Stahle M and Pivarcsi A.
J Invest Dermatol. 2010; 130(1): 124-134.

TMEPAI , a Transmembrane TGF-β-Inducible Protein, Sequesters Smad Proteins from Active Participation in TGF-β Signaling.
Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, Satoh K, Wiercinska E, Yang W, Shi L, Tanaka A, Nakano N, Mommaas AM, Shibuya H, ten Dijke P and Kato M.
Mol Cell. 2010; 37(1): 123-134.


Poor Vessel Formation in Embryos from Knock-in Mice Expressing ALK5 with L45 Loop Mutation Defective in Smad Activation.
Itoh F, Itoh S,Carvalho RLC, Adachi T, Ema M, Goumans MJ, Larsson J, Karlsson S, Takahashi S, Mummery CL, ten Dijke P and Kato M.
Lab Invest. 2009; 89(7): 800-810.

TAL1/SCL relieves the E2-2-mediated repression of VEGFR2 promoter activity.
Tanaka A, Itoh F, Itoh S and Kato M.
J Biochem. 2009; 145(2): 129-135.


Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes.
Wang B, Suzuki H and Kato M.
Biochem Biophys Res Commun. 2008; 376(2): 288-292.

Induction of podoplanin by transforming growth factor-beta in human fibrosarcoma.
Suzuki H, Kato Y, Kaneko MK, Okita Y, Narimatsu H and Kato M.
FEBS Lett. 2008; 582(2): 341-345.

Ephrin-A1 promotes the malignant progression of intestinal tumors in Apc min/+ mice.
Shi L, Itoh F, Itoh S, Takahashi S, Yamamoto M and Kato M.
Oncogene. 2008; 27(23): 3265-3273.


Nagative regulation of TGF-beta receptor/Smad signal transduction.
Itoh S, ten Dijke P.
Curr Opin Cell Biol. 2007; 19(2): 176-184.

Suppression of MafA-dependent transcription by transforming growth factor-beta signaling.
Matsumura H, Kudo T, Harada A, Esaki R, Suzuki H, Kato M and Takahashi S.
Biochem Biophys Res Commun.2007; 364(1): 151-156.

Compensatory signalling induced in the yolk sac vasculature by deletion of TGF receptors in mice.
Carvalho RL, Itoh F, Goumans MJ, Lebrin F, Kato M, Takahashi S, Ema M, Itoh S, van Rooijen M, Bertolino P, ten Dijke P and Mummery CL.
J Cell Sci. 2007; 120(Pt 24): 4269-4277.

Suppression of keratinocyte stratification by a dominant negative JunB mutant without blocking cell proliferation.
Ikebe D, Wang B, Suzuki H and Kato M.
Genes Cells.2007; 12(2): 197-207.

細胞. 2007; 39(8): 322-326.


Methylation of Smad6 by Protein Arginine N-Methyltransferase 1.
Inamitsu M, Itoh S, Hellman U, ten Dijke P and Kato M.
FEBS lett. 2006; 580(28-29): 6603-6611.

ELAC2, A Putative Prostate Cancer Susceptibility Gene Product, Potentiates TGF-β/Smad-induced Growth Arrest of Prostate Cells.
Noda D, Itoh S, Watanabe Y, Inamitsu M, Dennler S, Itoh F, Koike S, Dnielpour D, ten Dijke P and Kato M.
Oncogene. 2006; 25(41): 5591-5600.


Roles of vascular endothelial growth factor receptor 3 signaling in differentiation of mouse embryonic stem cell-derived vascular progenitor cells into endothelial cells.
Suzuki H, Watabe T, Kato M, Miyazawa K and Miyazono K.
Blood. 2005; 105(6): 2372-2379.

Cell type-specific regulation of the TGF-β-responsive alpha2(I) collagen gene by CpG methylation.
Yamane K, Suzuki H, Ihn H, Kato M, Yoshikawa H and Tamaki K.
J Cell Physiol.2005; 202(3): 822-830.

予防医学事典. 朝倉書店, 2005; 358-359.


A Role for Id in the Regulation of TGF-β-induced epithelial-mesenchymal transdifferentiation.
Kondo M, Cubillo E, Tobiume K, Shirakihara T, Fukuda N, Suzuki H, Shimizu K, Takehara K, Cano A, Sitoh M and Miyazono K.
Cell Death Differ.2004; 11(10): 1092-1101.

Upregulated CD44v9 expression inhibits the invasion of oral squamous cell carcinoma cells.
Sato S, Miyauchi M, Kato M, Kitajima S, Kitagawa S, Hiraoka M, Kudo Y, Ogawa I and Takata T.
Pathobiology. 2004; 71(4): 171-175.

c-Ski inhibits the TGF-β signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements.
Suzuki H, Yagi K, Kondo M, Kato M, Miyazono K and Miyazawa K.
Oncogene. 2004; 23(29): 5068-5076.

CREB Cooperates with BMP-stimulated Smad signaling to enhance transcription of the Smad6 promoter.
Ionescu AM, Drissi H, Schwarz EM, Kato M, Puzas JE, McCance DJ, Rosier RN, Zuscik MJ and O'Keefe RJ.
J Cell Physiol. 2004; 198(3): 428-440.

Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells.
Itoh F, Itoh S, Goumans MJ, Valdimardottir G, Iso T, Dotto GP, Hamamori Y, Kedes L, Kato M and ten Dijke P.
EMBO J. 2004; 23(3): 541-551.

Transforming growth factor-β signaling is differentially inhibited by Smad2D450E and Smad3D407E.
Kondo M, Suzuki H, Takehara K, Miyazono K and Kato M.
Cancer Sci.2004; 95(1): 12-17.

キーワードで理解する転写イラストマップ. 羊土社, 2004; 176-193.

サイトカイン・増殖因子用語ライブラリー. 羊土社, 2004.


Receptor tyrosine kinases inhibit bone morphogenetic protein-Smad responsive promoter activity and differentiation of murine MC3T3-E1 osteoblast-like cells.
Nakayama K, Tamura Y, Suzawa M, Harada S, Fukumoto S, Kato M, Miyazono K, Rodan GA, Takeuchi Y and Fujita T.
J Bone Miner Res. 2003 May; 18(5): 827-835.

Activin receptor-like kinase(ALK)1 is an antagonisitic mediator of lateral TGF-β/ALK5 signaling.
Goumans M, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S and ten Dijke P.
Mol Cell. 2003 Oct; 12(4): 817-828

Synthetic triterpenoids enhance transforming growth factor β/Smad signaling.
Suh N, Roberts AB, Birkey Reffey S, Miyazono K, Itoh S, ten Dijke P, Heiss EH, Place AE, Risingsong R, Williams CR, Honda T, Gribble GW and Sporn MB.
Cancer Res. 2003 Mar 15; 63(6): 1371-1376

SARA and Hgs attenuate susceptibility to TGF-β1-mediated T cell suppression.
Kunzmann S, Wohlfahrt JG, Itoh S, Asao H, Komada M, Akdis CA, Blaser K and Schmidt-Weber CB.
FASEB J.2003 Feb;17(2): 194-202

Elucidation of Smad requirement in transforming growth factor-β type I receptor-induced responses.
Itoh S, Thorikay M, Kowanetz M, Moustakas A, Itoh F, Heldin CH and ten Dijke P.
J Biol Chem.2003 Feb; 278(6): 3751-3761

Lymphoid enhancer factor 1 makes cells resistant to transforming growth factor β-induced repression of c-myc.
Sasaki T, Suzuki H, Yagi K, Furuhashi M, Yao R, Susa S, Noda T, Arai Y, Miyazono K and Kato M.
Cancer Res. 2003 Feb 15; 63(4): 801-806.

トランスフォーミング増殖因子 βによる転写制御(PDF)
蛋白質 核酸 酵素. 2003 Dec; 48(16): 2247-2253


Compound disruption of Smad2 accelerates malignant progression of intestinal tumors in Apc knockout mice.
Hamamoto T, Beppu H, Okada H, Kawabata M, Kitamura T, Miyazono K and Kato M.
Cancer Res. 2002 Oct 15; 62(20): 5955-5961.

c-myc is a downstream target of the Smad pathway.
Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K and Kato M.
J Biol Chem. 2002 Jan 4; 277(1): 854-861.